Charm: A Language for Closed-form High-level Architecture Modeling
As computer architecture continues to expand beyond software-agnostic microarchitecture to data center organization, reconfigurable logic, heterogeneous systems, application-specific logic, and even radically different technologies such as quantum computing, detailed cycle-level simulation is no longer presupposed. Exploring designs under such complex interacting relationships (e.g., performance, energy, thermal, cost, voltage, frequency, cooling energy, leakage, etc.) calls for a more integrative but higher-level approach. We propose Charm, a domain specific language supporting Closed-form High-level ARchitecture Modeling. Charm enables mathematical representations of mutually dependent architectural relationships to be specified, composed, checked, evaluated and reused. The language is interpreted through a combination of symbolic evaluation (e.g., restructuring) and compiler techniques (e.g., memoization and invariant hoisting), generating executable evaluation functions and optimized analysis procedures. Further supporting reuse, a type system constrains architectural quantities and ensures models operate only in a validated domain. Through two case studies, we demonstrate that Charm allows one to define high-level architecture models concisely, maximize reusability, capture unreasonable assumptions and inputs, and significantly speedup design space exploration.
Weilong Cui, Yongshan Ding, Deeksha Dangwal, Adam Holmes, Joseph McMahan, Ali Javadi-Abhari, Georgios Tzimpragos, Frederic T. Chong, and Timothy Sherwood